
Design Methodology for Quickly and 
Accurately Generating SRAMs

Created to reduce design time, guarantee completely correct 
behavior at first tape-out, and produce process retargetability, 
a small company creates its own optimized flow combining 
standard and custom tools and methods.

by Lee Tavrow, John Johnson, and Mark Santoro

Traditional design flows don’t efficiently support the implementation of large, 
regular structures in IC design. At Micro Magic, we’ve created a proprietary high-
speed, low-power SRAM and implemented a supporting design flow based on 
currently available, standard analysis tools and three design tools we created. The 
design flow has been optimized to reduce the design time and guarantee correct 
behavior at first tape-out. Variable-size SRAMs can be automatically generated, and 
the design can be quickly retargeted to a different technology.

Micro Magic is a small, fabless semiconductor design company. Formed in January 
1995 to design microprocessors under contract, we have since taken on other 
designs, including SRAMs. During the course of designing various chips, we built 
and refined three design tools so that we could implement a streamlined, error-
reducing design flow. The design flow was further refined during the design of the 
SRAM.

Our SRAM is currently under patent review for some unique techniques that yield 
high speed--700 MHz using 0.25-µm technology-- low power, and high noise 
immunity. These characteristics are particularly valuable for embedded caches for 
microprocessors.

One of the primary goals during the design was to create a design flow that would 
allow us to quickly generate various-size SRAMs, depending on the design needs 



at the time. To do that, we had to employ a generator. We also needed to greatly 
reduce the verification time over the standard SRAM design flow so that when a 
new-size SRAM is generated, it can be completely verified quickly.

Another major goal of the design flow was to be able to switch technologies quickly. 
The design flow supports this capability through the use of a megacell generator and 
efficient verification techniques.

The design and layout of the SRAM was completed in 3 1\2 calendar months with 
approximately 9 person-months of effort. This period started from the receipt of the 
foundry six-transistor cell and technology rules and was completed with final tape-
out. Under the same technology rules, we can generate and verify different sizes of 
the SRAM up to 32 kbytes with 16 to 128 outputs in less than 1 week. Furthermore, 
multiple copies of the 32-kbyte SRAM can be combined to create larger designs. 
Implementing the same design with different technology will require about 3 
person-months of effort. The effort is split between verifying and optimizing the 
timing of the design and creating the layout. The generator doesn’t have to be 
modified.

The traditional design flow Large, regular structures like SRAMs don’t fit into 
current EDA design flows. The most common approach has been to create a small, 
representative schematic; generate or manually enter a schematic of the entire 
SRAM; lay out the entire SRAM by hand; functionally verify the design and then 
perform LVS; and extract a Spice netlist from the layout and perform critical path 
analysis.

A small representative schematic is used to refine the timing for the SRAM and is 
similar to the first step in our design flow. After that, the design flows diverge.

Generating a schematic of the entire SRAM has been necessary to perform LVS 
with the final layout. There’s been no other way to verify that the layout performs as 
designed in the schematic. However, generating a full schematic is time-consuming 
and error-prone. Furthermore, these large schematics aren’t compact and are hard 
to read and understand.

Because the layout is done by hand for the entire SRAM, generating a new-size 
SRAM in the same technology is still considerable hand work, and moving to a new 
technology requires a completely new layout.

As for verification, the process is unwieldy and time-consuming on several levels. 
Functional verification is done by running vectors on a netlist generated from 



the schematic and then performing LVS using the large, unwieldy schematic and 
the large, very regular layout. LVS of an SRAM is a difficult problem for available 
programs, because they frequently generate false errors, and much time is spent 
determining if the reported errors are real. In addition, the programs have problems 
reporting errors on large, repetitive structures; LVS therefore doesn’t exhaustively 
test the functionality of the final layout, which would be the optimal method for 
determining if the design is correct. 

Figure 1. Dividing the design flow into three distinct phases helped achieve the 
primary goals. In phase one, the designers created an accurate but compact design. 
In phase two, they produced a small SRAM and used it to verify the accuracy of the 
SRAM generator. In the final phase, they generated and verified the full memory.



Spice models are useful for critical path analysis, but they must be extracted by hand 
from the complete design--a tedious and error-prone procedure. Using the com-
plete design for running Spice for timing analysis of the critical path isn’t possible 
because the problem is too large. Fast Spice simulators such as ADM could be used, 
but the accuracy for timing analysis is reduced without gaining enough simulation 
speed to do exhaustive functional analysis.

What’s more, the design flow creates many possibilities for errors to be introduced 
and not caught. Also, there is little flexibility for creating derivative designs quickly.

The new design flow The goals of our design flow were to eliminate these problems. 
To do that we adopted five approaches:

1. Programmatically generate as much of the design as possible using a 
megacell generator. Using a megacell generator, we can easily generate 
new SRAM sizes. The generator is technology-independent, so that the 
SRAM can be regenerated with the layout of new leaf cells (such as the 
6T cell, sense amps, and decoder cells).

2. Refine the design using small, representative circuits. Small circuits 
make the iteration time from design modification to analysis as short 
as possible. Creating a small, representative circuit isn’t a revolutionary 
technique, but combined with our verification strategy, it eliminates 
the need to generate a full schematic. In other words, the representative 
schematic and the generator are the complete and compact description 
of the SRAM, saving design time and reducing the possibility of error.

3. Perform verification iterations on the small, representative SRAM to 
reduce design iteration time. The small, representative SRAM contains 
all permutations of the layout that will be used in the full-size memories. 
The analysis iteration times using this small SRAM are on the order 
of minutes--five minutes for a complete DRC versus two hours on the 
complete design. Thus problems can be found and corrected quickly, 
and since fully configured SRAMs are automatically produced using the 
same generator, they pass verification the first time and don’t require 
iterations to get the design correct. This approach therefore greatly 
reduces the design time for even the first SRAM. Building subsequent 
SRAMs in the same technology is extremely fast.

4. Perform full chip verification and analysis directly from the layout. 
We extract Verilog netlists of the full SRAM directly from the 
generated physical description. Full functional verification of all input 



combinations are run using our compiled cycle-based simulator, 
NIC (netlist into C). This approach eliminates error-prone and time-
consuming LVS while completely verifying the functionality of the 
SRAM. We also extract Spice netlists of critical paths from the layout. 
The netlists contain only the transistors and loads affecting the critical 
path--typically about 1,500. Therefore we can perform accurate timing 
analysis by running Spice on the actual physical data.

Although some of the techniques and tools used in this design flow are unique, 
most of the tools and the design description are all EDA standards. We used Verilog 
to describe the design and Verilog-XL (from Cadence Design Systems), Cver (from 
Pragmatic C Software) for the initial logic simulation, Hspice (from Avanti) for cir-
cuit analysis, and IC Rules (from Mentor Graphics) for design rule checking of the 
full SRAM as an additional check.

The SRAM was conducted in three phases: design and timing iteration, verification 
of the SRAM generator, and complete SRAM generation (see Figure 1). The SRAM 
consists of the array of bits, proprietary circuitry for speed and noise immunity en-
hancements, decoding logic, and address lines.

Design and timing iteration During the first phase, we created an accurate but 
compact design of the SRAM. This design is iterated many times for optimization. 
At the same time, the leaf cells were laid out. Embedded in the leaf cell layout is the 
information to guide the SRAM generator for assembling the SRAM.

The target goals for the memory were high speed with high noise immunity. To 
achieve those goals, we embedded proprietary circuitry in the core. Guaranteeing 
that they were achieved required accurate prediction of the timing, which was done 
using the abbreviated version of the schematic. The schematic contains a group of 
bit cells and supporting decoding and sense logic. The aim was to depict accurate 
loading for a single bit, and model the timing. Achieving the correct timing is a 
highly iterative process (see Figure 2).

The actual schematic was entered using our graphical tool for entering and manag-
ing large IC designs, SUE (Schematic User Environment). At that point, layout data 
didn’t exist, so we entered estimates of the loading into the schematic. The size of 
the driving circuitry was refined and iterated to achieve the timing goals. We deter-
mined and refined the behavior of the bit cell by driving the Hspice simulation from 
SUE. We modified circuit sizes directly on the schematic and viewed the Hspice 
output in SUE. The schematic represents the complete logic and circuit model of the 



final design and is easily modified to simulate SRAMs of different sizes by modify-
ing the loads on the schematic.

SUE has the capability of generating a Verilog netlist automatically from the sche-
matic. At this point in the design flow for more typical designs (random logic or 
datapaths), SUE would generate the Verilog model for simulation. However, since 
an SRAM is a large regular structure, it makes more sense to simply build the 
SRAM and extract the Verilog model from the layout as opposed to creating a large, 
unreadable schematic.

Because the schematic was small, the iteration time through the analysis tools was 
quick. Actual sizing and loading information are displayed and attached to the 
schematic. All circuit simulation data are derived directly from this schematic. A 
single, compact description is a great aid in design refinement.

Figure 2. An abbreviated version of the schematic is used in an 
iterative process to accurately depict the loading and model the 
timing. Wire timing models are included in the wires.



To lay out the leaf cells, we used our own tool, MMI Max (abbreviated to Max ). The 
leaf cells contain information used to overlap, abut, and rotate the cells into place.

The SRAM generator builds a hierarchical structure from the basic leaf cells. The 
hierarchy of our SRAM is deeper than that of typical SRAMs because of the embed-
ded proprietary circuits. It has seven levels built out of about 50 unique cells.

The generator is an algorithmic description of the construction of the core of the 
SRAM. It uses the general-purpose megacell generator built on top of Max, which 
performs the complex data manipulation tasks required to maneuver the cells and 
add physical features (such as wiring and vias) to the core. This approach keeps the 
specific SRAM generator to around 200 lines of code.

The generator uses parameters that are directly related to the desired SRAM config-
uration, such as COLUMNS for the number of columns of SRAM cells, ROWS for 
the number of rows, and OUTPUTS for the number of outputs. Thus the multiplex-
ing required to get the desired output is simply COLUMNS/OUTPUTS. Different 
mux-width cells must be laid out and the generator will then select the desired one. 
Additional parameters describe more subtle characteristics--for example, STRAP_
SPACING determines the number of SRAM cells between a well tie, a substrate tie, 
and a power strap.

The SRAM generator can also algorithmitically add vias to ensure correct decoding 
of the word lines. This capability is crucial to creating the SRAM generator, because 
it eases writing a compact, algorithmic description to generate all of the internal 
connections of the SRAM core, and it keeps the SRAM generator design rule-inde-
pendent.

At the end of the first phase of the design process, we had an accurate, abbreviated 
model of the SRAM; the preliminary timing simulation and leaf cell layout have 
been completed; and an algorithmic description of the SRAM has been construc-
tion encoded in the SRAM generator but not verified for accuracy.



Verification of the SRAM generator The goal of the second phase is to verify that 
the SRAM generator is producing a functionally and physically correct layout. 
Again, we used a small version of the SRAM so that testing iterations could be per-
formed quickly. At this point, we also refined the full-chip verification techniques 
so that when the full-size SRAM is generated, the verification methods are known 
to be good.

We checked the small test SRAM for logical correctness, the critical path extraction 
for timing verification, and design rule correctness.

Figure 3. The screen shot shows a portion of the small SRAM with bounding boxes. The 
hierarchy has been expanded to several levels in the different cells. Highlighted in white 
near the top center is a group containing four 6T cells.



The test SRAM consists of only a few hundred bits and includes a complete set of 
the decoding and sense circuitry. At least one copy of each cell and all possible lay-
out permutations of each cell are included.

Figure 3 shows a portion of the small SRAM with bounding boxes. The hierarchy 
has been expanded to several levels in the different cells.

The generator goes through a series of steps to generate the core. First, a 6T cell 
is placed, a copy is flipped and abutted to the first, and then a copy of both cells is 
flipped and abutted to the first two. These groups of four cells are placed along a 
row, and additional cells are spaced within the rows. Rows of 6T cells are built up 
on each other to a level of four rows deep. An additional row of circuits is added to 
this structure and the combined structure creates a block. Four blocks are added 
together to create a larger structure. This structure keeps expanding to produce the 
required-size SRAM. The generator then creates the spine that connects address 
lines to memory cells by adding the connections from bit to address line. The vias 
are added to the address lines by tracing the connectivity from the decoding logic to 
the cell line and finding where they overlap. At the overlap point, a via is added.

After building the small SRAM, we extracted a Verilog netlist from its layout using 
Max’s extraction capability. Max’s extractor builds the Verilog netlist describing the 
connectivity found in the layout. Max also recognizes the names of the function-
al cells (such as the 6T bit cell and other custom cells) and substitutes the Verilog 
description for each cell. The resulting netlist is a complete functional description of 
the design derived from the layout.

We then run a Verilog simulation with test vectors to verify the netlist. This step 
guarantees that the megacell generator correctly connected all cells and that there 
are no inverted signals or other logic problems in the design. The extracted Verilog 
replaces the schematic for the design. Because the schematic is generated from the 
layout, the two must match, eliminating the need for LVS.

Testing the small SRAM points out some limitations in the Verilog simulators. 
Although a reasonable set of test vectors can be simulated with Verilog-XL for 
the small SRAM, the large SRAM requires too much time and too much memory 
to perform the same level of verification. On the basis of the small memory, the 
256-kbyte SRAM would require hundreds of hours of Verilog-XL simulation and 
over a gigabyte of real memory.



To address the problem of excessive Verilog simulation time and resource require-
ments, we developed a compiled cycle-based simulator. NIC converts the Verilog 
netlist emitted by Max into a functional C program. The tool is capable of convert-
ing the switch-level primitives, such as NMOS and PMOS transistors and bidirec-
tional gates. The self-timed design requires three simulation loops for each SRAM 
access cycle. Even with the multiple-loop evaluation overhead, NIC is two orders 
of magnitude faster than Verilog-XL. It also greatly reduces the memory necessary 
to run the simulation--down to a size that easily runs on a 128-Mbyte workstation. 
With NIC, we can run an extensive verification suite on the full SRAM in a reason-
able amount of time using standard workstations.

NIC uses a set of marching addresses and data patterns. Additionally, to compen-
sate for possible bugs in the marching pattern generation, approximately the same 
number of random address and data patterns are applied. At each clock phase, all 
outputs are compared with a reference model.

NIC enables us to compile assertions into the simulator. One set of assertion code 
used is a count of the number of bit cells that are read and written during each clock 
phase. At the end of each phase, these counters are compared with the expected 
number of cell reads and writes. Checking the counters ensures that the decoding 
logic is selecting the correct number of cells each clock phase.

Another assertion ensures the uniqueness of the bit cells. Each bit cell is simulat-
ed by several unique lines of code. Each cell’s code has a flag for recording the last 
clock phase that the cell was accessed. If a cell determines it is accessed twice during 
any single clock phase then it is able to report the error immediately. Comparing 
the functional simulation with the reference model and checking that the proper 
number of bit cells are read and written, along with their uniqueness, ensures that 
the generated SRAM is logically correct.

Mentor Graphics’ IC Rules was used to perform DRC on the complete SRAM. By 
making sure that no DRC violations were created by the generator in the small 
SRAM, we could be confident that no errors would show up in the larger SRAMs. 
However, it’s always smart to perform a redundant check at such a crucial juncture.

Finally, to extract a Spice netlist of the critical paths from the test memory, we select 
any cell along a path and click a button in Max to generate the netlist. The Max ex-



tractor traces the cone of logic forward to a driving input and then backward to an 
output, paring all the extraneous logic. Parasitic loads are then extracted and added 
to the Spice netlist. Then, for the initial design, we simulated those netlists using 
Hspice. Generating the critical path netlists is done at this point in the design to test 
the capability of the critical path analysis since the full SRAM hasn’t been created 
yet.

Generating the full SRAM Finally, the actual SRAM is created by algorithmically 
extending all of the constructs. There is no new layout in the large SRAM, just more 
of the previous layout. Verifying the full SRAM should now be a single pass, and it 
was for our first design. Design iterations at this point would be time-consuming 
and are to be avoided.

Generating a 32-kbyte SRAM takes approximately 15 minutes using a SPARC-
station 20 with 64 Mbytes of memory and a 150-MHz processor. Extracting the 
Verilog netlist from the layout occurs in two steps: resolving terminal names in 
the hierarchical SRAM in preparation for generating a Verilog netlist and actually 
extracting the netlist. The whole process takes approximately three hours.

For the full functional simulation of the SRAM, we first use NIC to create a simu-
lation executable. This process takes about four hours and 500 Mbytes of memory 
and creates an 80-Mbyte executable. The marching and random data patterns are 
simulated, ensuring the correct functionality of the SRAM. The complete set of 
patterns on the full SRAM requires about 40 hours of CPU time. By running the ex-
ecutable on several workstations in parallel, we were able to functionally verify the 
full SRAM in one day. A comparable Verilog simulation would be about 100 times 
longer and require dozens of 1-Gbyte machines.

To ensure that no errors have been introduced, we run IC Rules on the full design.

Since determining the critical paths in an SRAM is straightforward (the farthest 
cells from the input), static timing analysis wasn’t needed. The final netlist for each 
critical path contains about 1,500 transistors and takes about 30 minutes to extract 
from the design’s roughly 2 million transistors. We run HSpice on the netlist and 
compare the timing with the predicted timing from phase one. The compact size of 
the critical path netlist enables us to perform useful analysis on the layout data.



As a final step, we plot both power and ground and inspect the plots visually. We 
use Max, which allows nets to be selected and plotted individually. Generating the 
plots takes a matter of minutes and has proven to be a valuable tool for spotting 
potential errors.

SRAMs are representative of a class of structures that include other memories and 
PLDs. We’re currently working to extend our methodology to the design of a family 
of FPGAs. * 
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